Products

  • 0
  • 0

A Method for Evaluating the Quality of 3D-Printing Metal Parts

How serious are fertility problems today? People don't want to give birth,can't afford it, and can't give birth that has become the "three mountains".
The problem of childbirth is related to the people's livelihood. Whether a country can prosper or not depends on the population. I saw a set of data a few days ago. The data shows that on January 1, 1990, 2,784 babies were born in Shanghai. Ten years later, on January 1, 2000, 1,148 babies were born in Shanghai. In 2010, the number became 380. , 2020 only 156 people, the decline in the birth rate is shocking. The three most critical reasons are: I don't want to give birth, I can't afford it, I can't give birth! The decline of the global population will bring a series of economic and social problems, among which the demand for 3D printing metal powder will also be affected.

Researchers at NTU Singapore have developed a fast and low-cost imaging method for assessing the quality of 3D-printed metal parts. This method can analyze the structure and material quality of 3D-printed metal parts. 
 
Most 3D-printed metal alloys consist of numerous microscopic crystals that vary in shape, size, and orientation of the atomic lattice. By mapping this information, scientists and engineers can infer the alloy's properties, such as strength and toughness. It's like looking at wood grain. When wood grain is continuous in the same direction, strength and toughness are strongest.
 
The new technology could benefit the aerospace sector - enabling low-cost rapid assessment of turbines, fan blades, and other critical components, which is of great significance to the maintenance and overhaul industry. 
 
Until now, however, analyzing the "microstructure" in 3D-printed metal alloys has been a time-consuming and laborious process, usually achieved using measurements made with scanning electron microscopes, which cost between S $100,000 and S $2 million. 
 
But the new alloy imaging method developed by Assistant Professor Matteo Seita and his team at NTU provides quality analysis in just a few minutes. They used a system of optical cameras, flashlights, and laptops that ran proprietary machine learning software developed by the team at a total cost of about $25,000.
 
The method involves treating the metal surface with chemicals to reveal its microstructure, then holding the sample facing the camera and using a flashlight to illuminate the metal in different directions to take multiple optical images. The software then analyzes the patterns produced by the light reflected off the surfaces of different metal crystals and deduces their orientation. The whole process takes about 15 minutes. The team's findings have been published in NPJ Computational Materials.
 
"By using our low-cost and fast imaging method, we can easily tell the difference between good 3D-printed metal parts and defective parts. Currently, it is impossible to tell the difference unless we evaluate the microstructure of the materials in detail, "explained Seita, an assistant professor at NTU's School of Mechanical and Aerospace Engineering and School of Materials Science and Engineering. 
 
"Even though two 3D-printed metal parts may be produced using the same technology and have the same geometry, they are never the same. In theory, this is similar to how two originally identical wooden objects could have different texture structures." 
 
New imaging methods improve 3D printing certification and quality assessment.  Assistant Professor Seita believes their innovative imaging method could simplify the certification and quality assessment of metal alloy parts produced by 3D printing, also known as additive manufacturing.
 
One of the most common techniques for 3D printing metal parts is to use high-powered lasers to melt metal powders and fuse them layer by layer until a complete product is printed. 
 
However, the microstructure, and thus the quality of the printed metal, depends on many factors, including the speed or strength of the laser, how long the metal cools before the next layer is melted, and even the type and brand of metal powder used. This is why the same design printed by two different machines or production plants may result in parts of different quality. 
 
Instead of using a complex computer program to measure crystal orientation in the light signals collected, the "smart software" developed by Assistant Professor Seita and his team uses a neural network to simulate how the human brain forms associations and processes thoughts. The team then used machine learning to program the software to feed it hundreds of optical images. 
 
Their software eventually learned how to predict the orientation of crystals in metal from an image, depending on how light scatters from the metal's surface. A complete "crystal orientation diagram" is then created, which provides comprehensive information about crystal shape, size, and atomic lattice orientation.
 
3D printing metal powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing metal powder price, you can send us your inquiry for a quote. ([email protected])
 
3D printing metal powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing metal powder, please feel free to contact us and send an inquiry. ([email protected])

 

According to Reuters, U.S. Treasury officials said they would discuss with G7 leaders pricing caps and tariffs on Russian oil as an alternative to the embargo, which would keep the market supplied, limit price spikes, and reduce Russian revenues.  

The EU foreign ministers' meeting was held in Brussels.  The meeting failed to agree on the sixth round of sanctions, including an oil embargo on Russia, because of objections from Hungary.  

EU High Representative for Foreign Affairs and Security Policy said at a press conference after the meeting, that the meeting failed to reach an agreement on the final adoption of the sixth round of sanctions, the permanent representatives of member states to the EU will continue to discuss. The foreign ministers faced similar difficulties trying to reach an agreement on an oil ban. He said Hungary's position was based on economic rather than political concerns.  

Hungary is highly dependent on Russia for energy, getting more than 60 percent of its oil and 85 percent of its natural gas from Russia.  

A few days ago, the European Commission submitted the sixth round of proposed sanctions against Russia, including a total ban on Russian oil imports by the end of this year. Hungary immediately objected and said it wanted substantial compensation from the EU to offset its loss from giving up Russian oil.

The 3D printing metal powder price is predicted to increase in the next few days, due to geopolitical factors.

Inquery us

Our Latest Products

Application of Aluminum Diboride AlB2 Powder

Aluminum boride is a random (or rhombic) white or pale yellow powder. Can be used as: non-toxic flame retardants, plastics, rubber, textiles, coatings, superconducting magnets, transmission lines, sensitive magnetic field detectors.…

What is the scope of application of boron nitride?

Boron nitride is a crystal composed of nitrogen atoms and boron atoms.The chemical composition is43.6%boron and56.4%nitrogen,with four different variants:hexagonal boron nitride,rhombohedral boron nitride,cubic nitride Boron,and wurtzite boron nitrid…

Basic information of molybdenum disulfide

Molybdenum disulfide is the main component of molybdenite. Black solid powder with metallic luster.…